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To achieve observability in today’s complex computing environments running distributed
applications that rely on cloud and local services, it is necessary to collect operational data from every
layer and every component of the distributed system. It is very important to perform deep insights
on this data and consolidate it into a single pane of glass with different perspectives to support the
multitude of stakeholders of the organization. The article proposes Microsoft cloud services, such as
Azure Monitor and Power BI and Amazon Web Services, such as Amazon CloudWatch and Kibana,
for monitoring log data. Based on these services we can collect and aggregate Azure Monitor and
Amazon CloudWatch log data from a variety of sources into a common data platform, where it can
be used for analysis, visualization, alerting. Microsoft Power BI and Amazon Kibana transforms log
data into rich visuals, sharing on the web and mobile devices. Log data can be analyzed with queries
to quickly retrieve, consolidate, and analyze collected data. A Kusto query which is a read-only
request was used to process data and return results. The request is stated in plain text, using a data-
flow model. Gathering as much information as possible from multiple data sources will enable
machines to predict future problems through artificial intelligence (AI) and automation. © 202/ Bull.
Georg. Natl. Acad. Sci.
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Data logging is the process of collecting and storing
data over a period of time in order to analyze specific
trends or record the data-based events of a system,
network or IT environment. For logs to be useful,
they require the following actions: Selecting useful
information to store and archive; Ensuring the
security and confidentiality of stored logs;
Controlling the quality of log data by analysing and
adding missing information to the logs; Monitoring

of an application, is the ability to have a global view

of an application at a given moment but also a history
of past states. Monitoring is also important to detect
any lack of server performance in real time [1].

Azure Monitor Views

Azure Monitor log contains different data types
organized in records for different sets of properties
for each type. Logs contain numeric values, such as

Azure Monitor metrics, but usually contain textual

© 2021 Bull. Georg. Natl. Acad. Sci.
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data with detailed descriptions. They differ from
these metrics in that they depend on their structure
and are often not collected at regular intervals.
Telemetry data, such as events and traces, is stored
in Azure Monitor logs, additional performance
data, so that it can be combined for analysis [2,3].

A common type of journal entry is an event that
isregularly collected. Events are created through an
app or service and usually contain enough
information to provide context.

Since data formats may vary, applications
create their own journal using the required
structure. Metrics stored in tabs to combine with
other monitoring data to analyze trends and other
data [4-7].

Log queries help us to fully leverage the value
of the data collected in Azure Monitor Logs.

We use the Kusto query language to retrieve
different types of log data from Azure Monitor.

Below examples of the log queris are given:

1. // Computers availability today
Heartbeat
| summarize count(ComputerIP) by
bin(TimeGenerated, 1h)

| render timechart

2. // Usage by data types
Usage
| summarize count_per_type=count() by DataType
| sort by count per_type desc
| render piechart

The amount of logs reported for each data type
as a chart in Microsoft Azure Portal [8].

We have:

¢ Rich visualizations for log data.

o Integrates into Azure Monitor management
model with workspaces and monitoring
solutions.

o Filters for custom parameters.

Limitations:

e Supports logs but not metrics.

e No personal views. Available to all users

with access to the workspace.

Bull. Georg. Natl. Acad. Sci., vol. 15, no. 3, 2021

e No automatic refresh.

e Limited layout options.

e No support for querying across multiple
workspaces  or

Application  Insights

applications.

Amazon Cloud Watch Views

Amazon EC2 (Elastic Compute Cloud) sends
metrics to Amazon CloudWatch. CloudWatch Logs
enables us to centralize the logs from all of systems,
applications, and AWS services. CloudWatch log
contains different data types organized in records
for different sets of properties for each type. Logs
contain numeric values, such as metrics from all
AWS services, but usually contain textual data with
detailed descriptions. We can see logs on the
Amazon CloudWatch dashboards,

customizable and with CloudWatch dashboards we

views are

can create customized views of the metrics and
alarms for your AWS resources. We can focus on a
particular services and resources. Telemetry data,
such as events and traces, is stored in CloudWatch
logs, additional performance data, so that it can be
combined for analysis.

A common type of journal entry is an event that
is regularly collected (By default, each data point
covers the 5 minutes that follow the start time of
activity for the instance). If we've enabled detailed
monitoring, each data point covers the next minute
of activity from the start time. We send our own
custom metrics to CloudWatch. Events are created
through an app or service and usually contain
enough information to provide context.

Since data formats may vary, applications
create their journal using the required structure.
Metrics stored in tabs to combine with other
monitoring data to analyze trends and other data
[91.

Log queries help us to fully leverage the value
of the data collected in CloudWatch Logs. The log
queries examples are given below:
stats count(srcAddr) as IP by loggingTime, bin(1h)
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Power BI Dashboards

To import data from a Log Analytics workspace in
Azure Monitor into Power BI, a dataset was
created in Power BI based on a log query in Azure
Monitor. The query is run each time the dataset is
refreshed. You can then build Power Bl reports that
use data from the dataset. To create the dataset in
Power BI, we export our query from Log Analytics
to Power Query language, then use this to create a
query in Power BI Desktop and publish it to Power
BI as a dataset. One of the features of Power BI
Service is usage metrics report on a dashboard or
report. The usage metrics report will give an
analysis of how many times the content is viewed
or share through which platforms and by which
users [9].

So resourceful import the results of a log query
into a Power BI dataset.

Microsoft Power BI Desktop has various icons
(Fig.1).

to represent different visualizations

Depending on what we wish to display, we tick the
checkbox for a particular data field, and then
choose a chart type from the right pane.

In Power BI model we combine data from
different sources [10,11].

Now we use Power BI Desktop to create
reports, then publish those reports to the Power BI

service, where we can view reports and dashboards.

Conclusion

Microsoft cloud services, such as Azure Monitor
and Power BI and Amazon Web Services, such as
Amazon CloudWatch and Kibana take advantage
of its features such as combining data from
different sources and sharing reports on the web
and mobile devices. Power BIgive us rich
visualizations and reports for analysis of different
sets of log data. After the initial import, the
dashboard and the reports continue to update daily.

We can control the refresh schedule on the dataset.
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With the Azure Audit Logs content pack for Power by Artificial Intelligence (AI) and automation.
BI, we can easily explore sensitive data using the = Gathering as much information from many data
initial set of metrics. Log intelligence can be  sources will allow machines to predict future

defined as a method of log analysis that is powered  issues.
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