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Mathematical properties of the Heisenberg and Robertson uncertainty relations, the basis of entire
quantum theory, are reviewed. The ordinary proof of the Heisenberg uncertainty relation for
coordinate and corresponding momentum is based on the Cauchy-Schwarz inequality. Transition to
uncertainty relation for mean square deviation from this inequality requires to confine operators by
some fundamental restrictions, such as hermiticity, equal domains, self-adjointness etc. After the
needed restrictions are applied, it follows inequality, which is a source of uncertainty relations for
various operators. D.Judge and K.Kraus well before mentioned that the commutation relation for
two operators do not imply fulfilment of uncertainty relation automatically, but it is necessary to
impose some strong mathematical restrictions. In explicit calculation appearing of surface terms is
expected, which can introduce a non-zero contribution into the uncertainty relation. Below we give
an algorithm for explicit calculation of these surface contributions. We study the relation between an
angle and momentum operator, which was the subject of current investigation in the last years.
© 2021 Bull. Georg. Natl. Acad. Sci.

Uncertainty relation, commutators, orbital momentum and angle

The uncertainty relation forms the basis of entire quantum theory. The ordinary proof of the Heisenberg
uncertainty relation for coordinate and corresponding momentum is based on the Cauchy-Schwarz

inequality, which is a general property of Hilbert space. For a pair of operators 4 and B, acting on the
state |1//> , the Schwartz inequality gives

(4¥|4¥)(BY|BY) > [(a¥|BY)[ (1)

Transition to the uncertainty relation for variance (or mean square deviation) |<AAAB>| , Where
A=A —<A> , requires to impose some limitations on operators under consideration, such as Hermiticity,

unique domains, self-adjointness etc. After that such limitations are fulfilled, the general uncertainty

relation for any such operators reduces to

(aaam) > |(4. ] @)
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which is a source of uncertainty inequalities (Here 7 =1 unites is used).

However, it was pointed out earlier [1,2], that the commutation relation

[Z,B} =iC 3)
for quantum mechanical observables A,B and C by itself does not imply the
uncertainty relation

1
(ada8)>—[(C) 4)

for all physically interesting states. There are examples showing that the uncertainty relation (2) for any
two observables A4 and B is not valid in such a generality. For example, the uncertainty relation for A

and B is usually written in the form (2)
1, &
AWAAWBZE‘(V/,z[A,BJy/)‘, )

where (AV,A)2 = H(121—<21V>1)y/||2 , with <121W> = (w,flw) and likewise for B . This definition is used in
many papers [3-5]. Thus the left-hand side of relation (5) is defined for v € D(A)mD(B) . On the other
hand, the right-side is only defined on the subspace D ([A, B]) =D(AB)ND(BA), which is much smaller

in general.

However, 4 and B being self-adjoint, relation (1.5) can be rewritten in the form [2,3]
1. )
AWAAWB25|1(Ay/,By/)—z(By/,Ay/)|, (6)

where the domain of the right-hand side now coincides with that of the left-hand side, D(A) mD(B) ,l.e.

the product of uncertainties for two observables 4 and B is not determined by their commutator, but by

the Hermitian sesquilinear form [2]
D, , (f,g) = i(Af,Bg)—i(Bf,Ag) , forall f,ge D(A)mD(B) . @)

As it is mentioned in [3], this modification is not simply a cosmetic one. When A or B are operators
of differentiation, the surface terms occurring upon integration by parts do not vanish in general and
contribute to the uncertainty relations.

Specific situation occurs in 3-dimensions, when spherical coordinates are used. One of the basically
coordinates, namely, a distance, is restricted by a half-line. Therefore, we have to be careful in calculation
of surface integrals, which, because of boundary conditions at the origin, may also give the nontrivial
contributions.

While the strong mathematical consideration is most powerful [3], the explicit calculation has more
transparency and simplicity. It was already demonstrated clearly in number of papers [6,7], concerning the
Ehrenfest theorem. We are inclined to think that a similar simplification may also occurr in case of

uncertainty relations.
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General Consideration of the Heisenberg-Robertson Relation

We derive the uncertainty relation following to a Weil method [8]. Suppose that the commutation relation
between two Hermitian operators has the form (3), where C is an Hermitian operator too.Consider the

integral
J(@)=[|(a4 ~iB,)y[ dr=0, ®)
where 4 = A—a, B, = B—b with a,a,b are some real parameters. Now
J=[((a4=iB)w) (a4 —iB)ydr = [(ad +iB )y (ad —iB )ydz. 9)

Despite the fact that 4 and B are Hermitian operators, we write down the Hermiticity condition with

some care. Introducing the following notations

[(Ay) aydr =y alpdr+Q, (10)
[(By) Bydr=[y Bydr+0, (11)
[(4y) Bydr = [y ABydr+ X (12)
[(Bw) Aydr=[v'BAydr+Y (13)

Here 0,,0,,X,Y are surface terms, remaining after integration by parts, which maybe non-vanishing

on the boundaries. They show deviations from (6). Exactly these terms can modify the uncertainty relations.
Let us drown an analogy between above decomposition and that given in paper [5]. The expectation
commutator was introduced in the following way

A+ B:=(Ay|By)—(w|ABy) (14)
and instead of (5), new uncertainty relation was considered

AAAB%|A¢B—B¢A+<[A,B]>|. (15)

The extra term here corresponds to ours X —Y . Therefore, our consideration is equivalent to that of

[5].Taking into account notations above, the sought-for integral (8) can be rewritten in the following form
(assumed the normalization of the state v )

J=[y (a’ 4’ —ia[4,B]+ B +Q +0, +ia (Y - X))ydr =
= o’ (4})—ia([4,B])+(B)+Q, +0, +ia (Y - X) (16)
and after taking into account the commutation relations [4,, B, | =[4,B] =iC , we find
o’ (47 )+a(C+i(Y = X))+(B))+Q +0, 20. (17)
Now from positive definiteness of square trinomial, we conclude that

<A]2>[<B]2>+Q]+QJ2%<C+;’(Y—X)>2. (18)
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If we now return to above introduced notations and suppose in addition that a = <A> and b= (B), it

follows generalized Heisenberg relation

(a4 ){[ (a8 +0 +Q2J>2%<C+i(Y—X)>2, (19)

where (AA)2 = (A —<A>)2 and the uncertainty inequality takes the final form

<(AA)>\/<(AB)2>+QI +0, 2%|<C+i(Y—X)>|. (20)

Some comments are now in order here:
This relation reduces to the usual one (2), when O, =0, = X =Y =0, i.e. when all considered operators

are self-adjoint. For physical operators a more strict conditions are needed: it is necessary that not only
wave function  , but also By belongs to the appropriate domain, where 4 is Hermitian (and similarly,
Ay must remain in the domain of wavefunctions, where B is Hermitian). In general, uncertainty product

<(AA)><(AB )> does not always separated as a factor. As a rule, it appears in combination with O, or Q,.

In this respect the Weil method, as such, is inconvenient to use. But the same happens in using other known
methods, which are described in various textbooks [9,10]. As we will see below, explicit calculation gives
that the additional terms from Eq. (10) — (13) does not always disappear. Only in cases, when additional
terms are absent, it follows the Heisenberg- Robertson (4) uncertainty relation.

When operators commute, C=0 and, therefore, the two physical quantities are measured
simultaneously, i.e. one, obviously, can take <(AA)> = <(AB)> =0. Then it follows from (19) a true

. . 1 . .
inequality, 0> _Z<(Y -X )>2 Hence (19) also contains a case of simultaneous measurement of two

physical quantities.

It may happen that not all surface terms are zero simultaneously. As we will see below it depends on
the singular character of considered operators at the boundaries.

If 0+0Q,<0, then (AB)'is constrained from below, <(AB)2 > >|0,+0,|. In contrast, when

0,+0, >0, then (A4)’ is constraint

(AA)%KCH'(Y—X 1)

1
UNerrog

So, one can establish which physical quantity will be constraint from below. In the following we get
examples of application of (20). As usual, minimization of uncertainty relation corresponds to the sign of
equality in (20).

Uncertainty Relation between Orbital Momentum and Angle

The most papers are devoted to the momentum-angle uncertainty relation [1,2,4]. We begin our

consideration from this example. Let us choose in (19) the following operators

A-1, =_m£, B=1(9). (22)
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where f ((0) is a real function, not involving differentials with respect to ¢ . The domain of the azimuthal
angle is restricted to the interval [O,27r], and since the wave functions l//(go) are continuously

differentiable, they must fulfill the boundary conditions [5]

dy (9) _dy(o)|

v (0) =y (27); (23)
ng |q7:0 ng |(p:27[
In this case [Eq.(10)]
2 . 2 dlj/* 27
[(Lw) Lyde= [y Lydo+n’ [w (¢) J (24)
0 ] de ),

and, so

0 = [w (?) i”[; I =1 {w(h)[ﬁ’: L —W(O)[i—il} : 25)

Because of boundary conditions (23), the last term vanishes and so O, =0. Moreover, O, =0, as

f ((0) is a multiplication operator. Then, in case of (23) we derive

[(Lw) £(owdo=[v'L,f (o) (0)do+incs (@) (o))3. (26)
Therefore,
X =in(f @)y (o))" =inlw (O) Lf (27) -1 (0)]. 27)

In addition, (13) reads

2

[(£ (o)) Lyde= fw*f(co)sz/d(p- (28)

0

Hence, Y =0. Taking into account all of these relations in (20), one concludes that

(182,76 @ )2 (ol O (1 2)- 1 0) - @)

Note that analogous relation was derived in [5]. In case,when f’ ((0) =, it follows

(AL, ) (a0) )22 (12w 0) ) (30)
4

Ify (go) functions are not periodic functions, then instead of (29) one has

(Ao 0) +0, 27

d
<—£+{|y/(2n)rf(27z)—|u/(0)|2f(0)}>‘. (1)
The same results were found in papers [3,4,5]. We see that the inclusion of extra terms modifies

Robertson’s uncertainty relation, following from the “ordinary” commutation relation [(p, LZ] =ih. The

reason is well known: The orbital momentum operator given by Eq.(22) is Hermitian only in the space of
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periodic functions with period 27z, but oy ((p) is not in domain, where L, is a self-adjoint operator. If

one choses the function f ((p) to be periodic also, then the extra terms vanish as well.
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